A New Variable Transformation for Numerical Integration

نویسنده

  • Avram Sidi
چکیده

Presently, variable transformations are used to enhance the performance of lattice rules for multidimensional integration. The transformations that are in the literature so far are of either polynomial or exponential nature. Following a short survey of some of the transformations that have been found to be effective, we propose a new transformation, denoted the sinm-transformation, that is neither polynomial nor exponential, but trigonometric, in nature. This transformation is also a representative of a general class of variable transformations that we denote 8m. We analyze the effect of transformations in 8 m within the framework of one-dimensional integration, and show that they have some very interesting and useful properties. Present results indicate that transformations in 8m can be more advantageous than known polynomial transformations, and have less underflow and overflow problems than exponential ones. Indeed, the various numerical tests performed with the sinm-transformation support this. We end the paper with numerical examples through which some of the theory is verified.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Application of CAS wavelet to construct quadrature rules for numerical ‎integration‎‎

In this paper‎, ‎based on CAS wavelets we present quadrature rules for numerical solution‎ ‎of double and triple integrals with variable limits of integration‎. ‎To construct new method‎, ‎first‎, ‎we approximate the unknown function by CAS wavelets‎. ‎Then by using suitable collocation points‎, ‎we obtain the CAS wavelet coefficients that these coefficients are applied in approximating the unk...

متن کامل

Extension of a class of periodizing variable transformations for numerical Integration

Class Sm variable transformations with integer m, for numerical computation of finite-range integrals, were introduced and studied by the author in the paper [A. Sidi, A new variable transformation for numerical integration, Numerical Integration IV, 1993 (H. Brass and G. Hämmerlin, eds.), pp. 359–373.] A representative of this class is the sinm-transformation that has been used with lattice ru...

متن کامل

Finite integration method with RBFs for solving time-fractional convection-diffusion equation with variable coefficients

In this paper, a modification of finite integration method (FIM) is combined with the radial basis function (RBF) method to solve a time-fractional convection-diffusion equation with variable coefficients. The FIM transforms partial differential equations into integral equations and this creates some constants of integration. Unlike the usual FIM, the proposed method computes constants of integ...

متن کامل

A finite difference technique for solving variable-order‎ ‎fractional integro-differential equations

‎In this article‎, we use a finite difference technique‎ ‎to solve variable-order fractional integro-differential equations‎ ‎(VOFIDEs‎, ‎for short)‎. ‎In these equations‎, ‎the variable-order fractional integration(VOFI) and‎ ‎variable-order fractional derivative (VOFD) are described in the‎ ‎Riemann-Liouville's and Caputo's sense,respectively‎. ‎Numerical experiments‎, ‎consisting of two exam...

متن کامل

Two-Dimensional Boundary-Conforming Orthogonal Grids for External and Internal Flows Using Schwarz-Christoffel Transformation

In this paper, a Schwarz-Christoffel method for generating two-dimensional grids for a variety of complex internal and external flow configurations based on the numerical integration procedure of the Schwarz-Christoffel transformation has been developed by using Mathematica, which is a general purpose symbolic-numerical-graphical mathematics software. This method is highly accurate (fifth order...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015